w-Invariants and the Fintushel–Stern Invariants for Plumbed Homology 3-Spheres
نویسندگان
چکیده
منابع مشابه
Unified So(3) Quantum Invariants for Rational Homology 3–spheres
Let M be a rational homology 3–sphere with |H1(M,Z)| = b. For any odd divisor c of b, we construct a unified invariant IM,c lying in a cyclotomic completion of a certain polynomial ring, which dominates Witten–Reshetikhin–Turaev SO(3) invariants of M at all roots of unity whose order r satisfies (r, b) = c. For c = 1, we recover the unified invariant constructed by Le and Beliakova–Le. If b = 1...
متن کاملOn Perturbative Psu(n) Invariants of Rational Homology 3-spheres
We extract power series invariants from the quantum PSU(n)-invariants of rational homology 3-spheres. This generalizes a result of Ohtsuki (the n = 2 case) which led him to the definition of finite type invariants of 3-manifolds. The proof uses some symmetry properties of quantum invariants (of links) derived from the theory of affine Lie algebras and the theory of the Kontsevich integral. 0. I...
متن کاملFinite Type Invariants of Integral Homology 3-spheres: a Survey
We are now embarrassingly rich in knot and 3-manifold invariants. We have to organize these invariants systematically and find out ways to make use of them. The theory of finite type knot invariants, or Vassiliev invariants, has been very successful in accomplishing the first task. Recently, an analogous theory of finite type invariants of integral homology 3-spheres started to emerge. The anal...
متن کاملSeiberg-Witten invariants of rational homology 3-spheres. Part I
2 Seiberg-Witten invariants of closed 3-manifolds 9 2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 The case b1 > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 The case b1 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 The case b1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملSeiberg Witten Invariants of Rational Homology 3-spheres
In 1996 Meng and Taubes [16] have established a relationship between the Seiberg– Witten invariants of a (closed) 3-manifold with b1 > 0 and the Milnor torsion. A bit later Turaev, [29, 30], enhanced Meng–Taubes’ result, essentially identifying the Seiberg–Witten invariant with the refined torsion he introduced earlier in [27]. In [29] Turaev raised the question of establishing a connection bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Experimental Mathematics
سال: 2011
ISSN: 1058-6458,1944-950X
DOI: 10.1080/10586458.2011.544556